13 research outputs found

    Study of chemical and optical properties of biomass burning aerosols during long-range transport events toward the arctic in Summer 2017

    Get PDF
    Producción CientíficaBiomass burning related aerosol episodes are becoming a serious threat to the radiative balance of the Arctic region. Since early July 2017 intense wildfires were recorded between August and September in Canada and Greenland, covering an area up to 4674 km2 in size. This paper describes the impact of these biomass burning (BB) events measured over Svalbard, using an ensemble of ground-based, columnar, and vertically-resolved techniques. BB influenced the aerosol chemistry via nitrates and oxalates, which exhibited an increase in their concentrations in all of size fractions, indicating the BB origin of particles. The absorption coefficient data (530 nm) at ground reached values up to 0.6 Mm–1, highlighting the impact of these BB events when compared to average Arctic background values, which do not exceed 0.05 Mm–1. The absorption behavior is fundamental as implies a subsequent atmospheric heating. At the same time, the AERONET Aerosol Optical Depth (AOD) data showed high values at stations located close to or in Canada (AOD over 2.0). Similarly, increased values of AODs were then observed in Svalbard, e.g., in Hornsund (daily average AODs exceeded 0.14 and reached hourly values up to 0.5). Elevated values of AODs were then registered in Sodankylä and Andenes (daily average AODs exceeding 0.150) a few days after the Svalbard observation of the event highlighting the BB columnar magnitude, which is crucial for the radiative impact. All the reported data suggest to rank the summer 2017 plume of aerosols as one of the biggest atmosphere related environmental problems over Svalbard region in last 10 years

    Aerosol optical properties over Svalbard: a comparison between Ny-Ålesund and Hornsund

    No full text
    This paper presents the CAMS model based aerosol optical properties calculated for two Spitsbergen fjords, Kongsfjorden (Ny-Ålesund) and Hornsund (Polish Polar Station in Hornsund) measured between 2010 and 2015. A small decrease in Aerosol Optical Depth (AOD) is shown throughout the study period leading to an alteration of the state of the polar atmosphere. However, the potential differences observed between the stations were not statistically significant. While during the studied period no significant differences in chemical composition between the stations were observed, increasing mean values of Black Carbon (BC) were found to be associated with an increasing number of wild forest fires in remote areas producing smoke plumes, which are further transported over vast distances and reach Spitsbergen

    Deep Neural Networks for Aerosol Optical Depth Retrieval

    No full text
    Aerosol Optical Depth (AOD) is a measure of the extinction of solar radiation by aerosols in the atmosphere. Understanding the variations of global AOD is necessary for precisely determining the role of aerosols. Arctic warming is partially caused by aerosols transported from vast distances, including those released during biomass burning events (BBEs). However, measuring AODs is challenging, typically requiring active LIDAR systems or passive sun photometers. Both are limited to cloud-free conditions; sun photometers provide only point measurements, thus requiring more spatial coverage. A more viable method to obtain accurate AOD may be found through machine learning. This study uses DNNs to estimate Svalbard’s AODs using a minimal set of meteorological parameters (temperature, air mass, water vapor, wind speed, latitude, longitude, and time of year). The mean absolute error (MAE) between predicted and true data was 0.00401 for the entire set and 0.0079 for the validation set. It was then shown that the inclusion of BBE data improves predictions by 42.167%. It was demonstrated that AODs may be accurately estimated without the use of expensive instrumentation, using machine learning and minimal data. Similar models may be developed for other regions, allowing immediate improvement of current meteorological models

    Deep Neural Networks for Aerosol Optical Depth Retrieval

    No full text
    Aerosol Optical Depth (AOD) is a measure of the extinction of solar radiation by aerosols in the atmosphere. Understanding the variations of global AOD is necessary for precisely determining the role of aerosols. Arctic warming is partially caused by aerosols transported from vast distances, including those released during biomass burning events (BBEs). However, measuring AODs is challenging, typically requiring active LIDAR systems or passive sun photometers. Both are limited to cloud-free conditions; sun photometers provide only point measurements, thus requiring more spatial coverage. A more viable method to obtain accurate AOD may be found through machine learning. This study uses DNNs to estimate Svalbard’s AODs using a minimal set of meteorological parameters (temperature, air mass, water vapor, wind speed, latitude, longitude, and time of year). The mean absolute error (MAE) between predicted and true data was 0.00401 for the entire set and 0.0079 for the validation set. It was then shown that the inclusion of BBE data improves predictions by 42.167%. It was demonstrated that AODs may be accurately estimated without the use of expensive instrumentation, using machine learning and minimal data. Similar models may be developed for other regions, allowing immediate improvement of current meteorological models

    Impact of wild forest fires in Eastern Europe on aerosol composition and particle optical properties

    Get PDF
    In this paper the authors discuss the changes of aerosol optical depth (AOD) in the region of eastern Europe and the Baltic Sea due to wild fire episodes which occurred in the area of Belarus and Ukraine in 2002. The authors discuss how the biomass burning aerosols were advected over the Baltic area and changed the composition of aerosol ensemble for a period of several summer weeks. The air pressure situation and slow wind speeds also facilitated the development of such conditions. As a consequence very high AOD levels were recorded, by an order of 3–4 higher versus normal conditions and they significantly increased the annual averages. On particular days of August 2002 the AOD values reached a level of over 0.7. On these days fine particles fully dominated the entire ensemble of aerosol particles. They were either sulfates or smoke particles. Such situation was unique over a period of many years and it had its serious consequences for the region and especially for the Baltic Sea

    Anthropic settlementsʹ impact on the light-absorbing aerosol concentrations and heating rate in the arctic

    Get PDF
    Light-absorbing aerosols (LAA) impact the atmosphere by heating it. Their effect in the Arctic was investigated during two summer Arctic oceanographic campaigns (2018 and 2019) around the Svalbard Archipelago in order to unravel the differences between the Arctic background and the local anthropic settlements. Therefore, the LAA heating rate (HR) was experimentally determined. Both the chemical composition and high-resolution measurements highlighted substantial differences between the Arctic Ocean background (average eBC concentration of 11.7 ± 0.1 ng/m3) and the human settlements, among which the most impacting appeared to be Tromsø and Isfjorden (mean eBC of 99.4 ± 3.1 ng/m3). Consequently, the HR in Isfjorden (8.2 × 10−3 ± 0.3 × 10−3 K/day) was one order of magnitude higher than in the pristine background conditions (0.8 × 10−3 ± 0.9 × 10−5 K/day). Therefore, we conclude that the direct climate impact of local LAA sources on the Arctic atmosphere is not negligible and may rise in the future due to ice retreat and enhanced marine traffic

    Annual changes of aerosol optical depth and Ångström exponent over Spitsbergen

    Get PDF
    This book contributes to the current discussion on global environmental changes by discussing modifications in marine ecosystems related to global climate changes. In marine ecosystems, rising atmospheric CO2 and climate changes are associated with shifts in temperature, circulation, stratification, nutrient input, oxygen concentration and ocean acidification, which have significant biological effects on a regional and global scale. Knowing how these changes affect the distribution and abundance of plankton in the ocean currents is crucial to our understanding of how climate change impacts the marine environment. Ocean temperatures, weather and climatic changes greatly influence the amount and location of nutrients in the water column. If temperatures and currents change, the plankton production cycle may not coincide with the reproduction cycle of fish. The above changes are closely related to the changes in radiative forcing, which initiate feedback mechanisms like changes in surface temperature, circulation, and atmospheric chemistry

    Aerosol Optical Depth variations due to local breeze circulation in Kongsfjorden, Spitsbergen

    No full text
    This paper presents the results of Aerosol Optical Depth (AOD) studies which took place in Ny-Ålesund in the spring of 2014 during the iAREA campaign. The measurements were taken using Microtops II hand-held sunphotometers along the Kongsfjorden, on a path leading from the research village to the fjord opening. Local breeze circulation was observed during the measurement campaign which resulted in an evident increase of AOD along the measurement profile towards the open sea. Using the observed AOD, changes over the open sea have been calculated and the location of the breeze front has been determined
    corecore